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ABSTRACT

In this study, the ensemble of three-dimensional variational data assimilation (En3DVar) method for

convective-scale weather is adopted and evaluated using an idealized supercell storm simulated by the

Weather Research and Forecasting (WRF) Model. Synthetic radar radial velocity, reflectivity, satellite-

derived cloud water path (CWP), and total precipitable water (TPW) data are produced from the simulated

supercell storm and then these data are assimilated into another WRF Model run that starts with no con-

vection. Two types of experiments are performed. The first assimilates radar and satellite CWP data using a

perfect storm environment. The second assimilates additional TPW data using a storm environment with dry

bias. The first set of experiments indicates that incorporating CWP and radar data into the assimilation leads

to a much faster initiation of supercell storms than found using radar data alone. Assimilating CWP data

primarily improves the analyses of nonprecipitating hydrometeor variables. The results from the second set of

experiments demonstrate the critical importance of the storm environment. When using the biased storm

environment, assimilation of CWP and radar data enhances the analyses, but the forecast skill rapidly de-

creases over the subsequent 1-h forecast. Further experiments show that assimilating the TPWdata has a large

impact on storm environment that is essential to the accuracy of the storm forecasts. In general, the com-

bination of radar data and satellite data within theEn3DVar results in better analyses and forecasts thanwhen

only radar data are used, especially for an imperfect storm environment.

1. Introduction

The goal of the NOAA’s Warn-on-Forecast (WoF)

program is tomakemore accurate forecasts of high-impact

weather events, such as tornadoes, hailstorms, flash

floods, and damaging windstorms (Stensrud et al. 2009).

To accomplish this goal, high-resolution remote sensing

data, such as radar and high-resolution satellite data

that provide information on internal storm structures,

have to be used. Many studies have demonstrated that

effective utilization of high-resolution remote sensing

data in convective-scale numerical models leads to sig-

nificant improvement in severe weather analyses and

forecasts (Dowell et al. 2004; Gao and Stensrud 2012;Corresponding author: Dr. Jidong Gao, jidong.gao@noaa.gov
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Gao et al. 2004; Jones and Stensrud 2012; Jones et al.

2013, 2016; Stensrud andGao 2010;Wheatley et al. 2015;

Yussouf et al. 2013; Johnson et al. 2015;Wang andWang

2017; Johnson and Wang 2017).

Radial velocity and reflectivity from the Weather

Surveillance Radar-1988 Doppler (WSR-88D; Crum

et al. 1993) can provide important wind and hydrome-

teor information within areas of precipitation. Assimi-

lating observations from multiple radars was a primary

tool used to understand the internal structures and dy-

namics of convective storms over the past 20 years

(Aksoy et al. 2009; Dowell et al. 2011, 2004; Gao and

Stensrud 2012; Gao et al. 2004; Sun 2005; Yussouf and

Stensrud 2010). For example, Sun (2005) demonstrated

the usefulness of radar data in a four-dimensional vari-

ational data assimilation (4DVar) system for initializing

and forecasting a severe storm. Yussouf and Stensrud

(2010) showed the advantages of using the ensemble

Kalman filter (EnKF) method to assimilate high-

temporal-frequency radar data for convective storms.

Despite some encouraging results, a major shortcoming

of radar data assimilation remains, in that the assimila-

tion is underdetermined. Only wind and some of the

hydrometeor variables are closely related to radar ob-

servations, while the other model variables are not di-

rectly observed. For instance, nonprecipitating cloud

water and ice, which are excluded from commonly used

reflectivity operators, may not be properly analyzed in a

3DVar system. Environmental information, such as

water vapor content and air temperature, also cannot be

captured by the radar observations, yet the environment

has a large influence on either the generation or dissi-

pation of convective storms.

The assimilation of satellite data in NWP is very ma-

ture on synoptic and mesoalpha scales (Harris and Kelly

2001; Matricardi et al. 2004; Saunders et al. 1999;

Vukicevic et al. 2006; Weng 2007; Weng and Liu 2003),

with the direct assimilation of satellite radiances being a

very common approach. By assimilating radiances, one

can avoid the uncertainties and discrepancies in the re-

trieval algorithms, which differ between instruments

(Derber and Wu 1998). However, because of the in-

accuracy of radiative transfer models (RTMs) and their

sensitivity to the channels being assimilated (Migliorini

2012), satellite radiances are generally assimilated only

over clear-sky areas. Although considerable progress in

cloudy radiance assimilation has been reported in the

past decade (Okamoto et al. 2014; Pavelin et al. 2008;

Polkinghorne and Vukicevic 2011; Polkinghorne et al.

2010; Prates et al. 2014; Stengel et al. 2013; Vukicevic

et al. 2004; Weisz et al. 2007), applying these methods

may introduce additional uncertainties because of dif-

ferent assumptions between the model physics and

RTMs, especially at high spatial and temporal resolu-

tions (Zupanski et al. 2011).

One recent application of satellite data for convective-

scale NWP is to assimilate derived products from satellite

observations, such as cloud water path (CWP). Jones

et al. (2013) used CWP retrievals from the Geosta-

tionaryOperational Environmental Satellite (GOES) to

improve hydrometeor mixing ratios over cloudy areas

for the severe weather event that occurred on 10 May

2010. In the experiments, both radar data and CWP data

were assimilated using the WRF Data Assimilation

Research Testbed (DART) program (Anderson et al.

2009) with 40 ensemble members. Results demonstrated

that the storm structure was improved and that

spurious cells were eliminated, by assimilating CWP

data at 15-min intervals over a 3-h data assimilation

(DA) period compared to the experiments without

CWP assimilation.

With the launch ofGOES-16 (on 19 November 2016),

formally known as GOES-R, the application of high-

resolution satellite data in convective NWP will be

expected to grow rapidly. Both WSR-88D radar obser-

vations and GOES-16 satellite products contain useful

information about storm structures and characteristics.

In addition, GOES-16 products, such as total pre-

cipitable water (TPW) data, contain water vapor in-

formation, which is an important component of the

storm environment.

The environment in which convection develops can be

as important to the forecast as the details of the con-

vection itself and thus it is highly beneficial to create a

good initial condition for severe weather prediction.

Kuo et al. (1996) conducted a set of experiments in-

dicating that even when using a first guess with a very

poor initial moisture field, 4DVar was quite effective in

improving the vertical moisture distribution when TPW

was assimilated. But this study was conducted at only

mesoscale resolutions. For convective-scale NWP, the

importance of the storm moisture environment has not

been extensively studied. Thus, we study the impact of

assimilating CWP and TPW (both of which will be

GOES-16 products) on the analysis and forecast of an

idealized supercell storm together with the assimilation

of radar data using the En3DVar method (Gao

et al. 2016).

A concept of the ensemble of DAs (EDA) used by

Météo-France andECMWF (Berre et al. 2007; Bonavita

et al. 2012) was adopted in Gao et al. (2016). The only

difference between the operational approaches is that

Gao et al. used extended control variables, or so-called

alpha control variables (Lorenc 2003; Wang et al. 2008),

for introducing ensemble covariances into the varia-

tional system. The EDA approach would be very
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expensive if 4DVar is used as the core DA scheme, so

the En3DVar uses 3DVar as its core DA scheme. This

choice takes advantage of both the ensemble assimila-

tion technique and 3DVar, since flow-dependent back-

ground error covariances estimated from an ensemble

forecast are used, as multivariate correlations are more

conveniently modeled by ensemble covariances, while

the computationally high efficiency of 3DVar method is

retained. Once this is completed, two groups of experi-

ments are performed. The first group assimilates radar

and satellite CWP data using a perfect storm environ-

ment, similar to that described in Jones et al. (2013), but

using the En3DVar framework. The second group as-

similates TPW data in addition to radar and satellite

CWP data, as a storm environment with dry bias is used.

The motivation for these two scenarios is to examine to

what extent the recently launched GOES-16 produced

CWP and TPW products can benefit convective-scale

data assimilation and NWP beyond the benefits already

provided from radar data assimilation.

The methodology of the En3DVar scheme used for

assimilating radar and satellite data is briefly described

in section 2. Section 3 provides an introduction of the

model configurations, the forward operators for the ob-

servations, and the experimental design. The diagnostics of

the analyses are addressed in section 4. Section 5 qualita-

tively and quantitatively verifies the forecast performance.

Conclusions are given in section 6.

2. Methodology

The En3DVar method adopted in this study was used

by Gao et al. (2016). The basic concept of En3DVar

method is tominimize the cost function Jk, where k is the

number of ensemble members, defined as the back-

ground term and the observation term plus other con-

straint terms:

J
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2
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1
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where xk and xbk are the analysis and background state

vectors for ensemble member k, respectively; H(xk) is

the observation operator; and yok are the observation

vectors. Random perturbations are applied to the orig-

inal observation to generate various observations for

each ensemble member, similar to the stochastic EnKF

(Houtekamer andMitchell 1998). The constraint term Jc
could contain any dynamical equation as a weak con-

straint, for example, a momentum equation for radar

radial velocity used by Xu et al. (2001) and Xu and

Wei (2013). In this study, themass continuity equation is

introduced into the penalty term Jc as a weak constraint.

Details relating to this constraint termwere discussed by

Gao et al. (2016). Terms Be and R are the background

and observation error covariance matrices, respectively.

Following Derber and Rosati (1989) and Courtier (1997),

define an alternative control variable v that makes an op-

timal analysis increment Dxk 5 (xk 2 xbk)5B1/2
e vk. Then

the cost function can be written in a preconditioned in-

cremental form,
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The background error covariance Be in the traditional

3DVar scheme is static and does not reflect the flow

dependency of error growth that relies on the particular

atmospheric situation. An essential difference of

En3DVar from the 3DVar framework is that the flow-

dependent covarianceBe is derived from an ensemble of

forecasts and establishes correlations between different

model variables.

In our experiments, an ensemble of En3DVar ana-

lyses and an extra control member were performed si-

multaneously by minimizing the cost function [(2)] to

update the analysis variables. The ensemble covariance

used in the En3DVar analysis for each ensemble mem-

ber is derived from the other ensemble forecasts except

itself. For the control member, the covariance is esti-

mated from the entire ensemble forecasts. Then the

ensemble analyses were centered on the control analysis

and inflated using the statistical information from the

ensemble backgrounds and analyses. The inflation pro-

cess is applied on each grid point according to the

equation

xak 5 xac 1g(xak 2 xa)1 (12g)(xbk 2 xb) , (3)

where xac is the analysis of the control member, xak 2 xa

indicates the perturbation from the mean of ensemble

analyses, and xbk 2 xb denotes the perturbation with re-

spect to the mean of ensemble background forecasts.

The g is set to 0.5 in this case such that the new analysis

perturbations are calculated by mixing half of analysis

and half of original background perturbations (Zhang

et al. 2004). The ensemble analyses after inflation can be

considered as the initial conditions for the next step.

Once the control analysis and the initial conditions of

ensemble members are prepared, 5-min forecasts are

started and then a DA cycle is finished. The above-

mentioned operations are repeated several times de-

pending on the number of DA cycles.
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Closely following Gao et al. (2013) and Gao and

Stensrud (2014), both radial velocity and reflectivity are

always assimilated in this study. The CWP and TPW

data are incorporated into the DA process to evaluate

the impact of these satellite-derived data. The forward

operators for radial velocity and reflectivity are chosen

from Gao and Stensrud (2012). Work by Chen et al.

(2015) is adopted for converting model variables to

CWP. For computing TPW, a derivation defined by the

theoretical basis document for the GOES-16 Advanced

Baseline Imager (ABI) is used in our analysis system.

Forward operators introduced here are briefly discussed

in the next section.

Analysis variables include the three-dimensional wind

fields u, y, andw; potential temperature u; air pressure p;

water vapor mixing ratio qv; and the hydrometeors that

depend on the microphysics scheme, usually containing

cloud water mixing ratio qc, rainwater mixing ratio qr,

ice mixing ratio qi, snow mixing ratio qs, and graupel

mixing ratio qg. Because the WRF Model requires the

geopotential f and mass of dry air m as prognostic var-

iables instead of pressure p, to better initialize the WRF

Model, the geopotential and dry air mass are calculated

so that the updated variables exactly match the prog-

nostic variable of the WRF Model.

3. Experimental design and forward operator

a. Model configuration and truth simulation for
OSSE

To test the En3DVar approach, a fully compress-

ible, nonhydrostatic Advanced Research version of

the Weather Research and Forecasting (WRF-ARW)

Model, version 3.6.1, was used in a three-dimensional

idealized mode for a quarter-circle shear supercell sim-

ulation. The horizontal spatial resolution is 1 km with 80

points in the north–south and east–west directions, while

40 stretched eta vertical levels up to 20km above ground

level (AGL; approximately 50 hPa) were chosen so that

the distance between each vertical level has a nearly

constant value. Open lateral boundary conditions and

Rayleigh damping for the top boundaries were used for

this idealized case. The length of the simulation extends

to 2 h.

The simulation was initialized with a slightly modified

sounding (Fig. 1, black line) of a classic supercell event

that occurred on 20 May 1977 in Del City, Oklahoma.

Similar to the past studies (Adlerman and Droegemeier

2002; Noda and Niino 2003; Rotunno and Klemp 1985;

Weisman andKlemp 1982), an ellipsoidal thermal bubble

was added in truth simulations to trigger convection. The

warm bubble had a potential temperature perturbation of

3K at the location x5 60 km, y5 25 km, z5 1:5 km

with a 10-km horizontal radius and a 1.5-km vertical ra-

dius. The Thompson scheme, a single-moment 5-class

microphysics scheme containing the predicted number

concentration of ice and rain, was used to depict the mi-

crophysical processes. The turbulence parameterization

scheme was the standard 1.5-order TKE closure. Cloud

and radiation physics were not applied in this idealized

simulation.

During the truth simulation started from the warm

bubble, the initial convection intensifies in the first 30min

(Figs. 2a–d) accompanied by the cloud forming around

10min (Fig. 3a). Rainwater appears at 15min (Fig. 3b),

while ice hydrometeors are generated at 20min (Figs. 3c–e).

The storm keeps developing and reaches its strongest in-

tensity at 40min (Figs. 2e,f) and then it starts to split

(Fig. 2g), accompanied by a slight decrease in intensity. The

right-splitting cell (which stays at the center of the domain)

tends to control the system after this point, as indicated by a

warm core in the midtroposphere, the cold pool near the

surface, the classical characteristic of a ‘‘hook echo,’’ and an

updraft reaching a maximum value 64 m s21 around 10km

AGL at 75min.

b. Synthetic radar observations

The synthetic radar data are sampled from the truth

simulation using the appropriate volume coverage

FIG. 1. Slightlymodified sounding of a classic supercell event that

occurred on 20 May 1977 in Del City for the truth simulation

(black), the first set of experiments (black), and second set of ex-

periments (red), including temperature (solid line), dewpoint

temperature (thick dashed line), and CAPE (thin dashed line).
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pattern (VCP), which is based on the type of weather

occurring. Corresponding to the operational WSR-88D

scanning strategy, radial velocity and reflectivity are

calculated on 14 different elevation angles for the

deep convectionmode.Available radar observations are

located on model grid points. Synthetic radar observa-

tions are determined for two radar locations, placed at

the southwest and northeast corners of the domain,

respectively.

The synthetic radial velocity is defined using the fol-

lowing equation:

V
r
5u sinf cosm1 y cosf cosm1w sinm , (4)

where (u, y, w) are the wind components from the

model forecast on staggered grid points, m is the

elevation angle, and f is the azimuthal angle of

radar beam.

FIG. 2. Simulated reflectivity (dBZ, shaded), wind field (m s21, arrows), and relative vorticity (1025 s21, contours) at 4 kmAGL from 15 to

45min as the reference truth. Positive vorticities (blue solid lines) and negative vorticities (red dashed lines) are indicated.
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The forward model for calculating synthetic reflec-

tivity is based on Smith et al. (1975) and Schoenberg

Ferrier (1994). Following Gao and Stensrud (2014) and

Gao et al. (2016), the radar reflectivity factor is obtained

by gathering the rainwater, snow, and graupel mixing

ratio,

Z
e
5Z(q

r
)1Z(q

s
)1Z(q

g
) , (5)

Z
dB

5 10 log
10
Z

e
. (6)

Once synthetic radar observations are generated,

reflectivities that are less than 15dBZ are set to be zero

and considered as precipitation-free regions. Then ran-

dom perturbations are added to the synthetic radar ob-

servations over precipitating areas for all members

except the control. Normally distributed errors with zero

mean and a standard deviation of 2ms21 are added to the

synthetic radial velocity on each available grid point. For

reflectivity, the errors also have a Gaussian distribution

with zero mean but with a standard deviation of 10dBZ

and are added to the synthetic reflectivity on grid points

where the reflectivity is greater than the threshold value

of 15dBZ. The same set of observation perturbations is

used in all experiments.

c. Synthetic satellite observations

Satellite data are a potential resource for storm-scale

data assimilation, as they have wider spatial coverage

than radar and fill many of the gaps seenwhen using only

radar observations. Two types of satellite retrieval data are

prepared for this study. CWP is the column amount of

liquid and frozenwater (kgm22) in the cloud. It represents

the horizontal distribution and weight of the liquid and ice

hydrometeors in the atmosphere. For clear sky, theCWP is

0kgm22. As the concentration of liquid water or ice in a

cloud goes up, so does the value of CWP. However, since

CWP is a vertically integrated quantity, it cannot capture

the vertical distribution of cloud water. Yet information

FIG. 3. Time–height composites of maximum hydrometeor mixing ratios (g kg21) for the truth simulation. (a) Cloud water, (b) rainwater,

(c) snow, (d) ice, and (e) graupel.
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provided by CWP is still helpful for improving the analysis

of the nonprecipitating hydrometeor variables that are not

seen in reflectivity observations. Besides CWP, cloud-base

heights, cloud-top heights, and cloud phases are addition-

ally offered in several real-time retrieval algorithms

(Minnis et al. 2008a,b, 2011).

Synthetic CWPs are created by integrating the hy-

drometeor variables from the truth simulation in at-

mospheric columns. First, the cloud water mixing ratio

and ice mixing ratio are summed to compute the total

cloud water mixing ratio at each grid point. Then the

CWP is obtained by accumulating the total water mix-

ing ratio from the cloud base to cloud top using the

following formula:

CWP5
1

g

ð
CBP

CTP

[q
c
(p)1 q

i
(p)] dp , (7)

where qc and qi are the cloudwater and icemixing ratios,

respectively; g is the gravity acceleration; and p is the

air pressure on the model level. Cloud-base pressure

(CBP) is chosen by finding the LCL, and cloud-top

pressure (CTP) is defined by locating the pressure

where the liquid water and ice mixing ratio are less

than 1023 g kg21. While observed CWP includes the

contribution from precipitating hydrometeors (i.e., qr,

qs, and qg), for the purposes of this work the CWP

experiments assimilate only CWP in mostly precipitation-

free regions. A threshold of 15 dBZ was set to distinguish

precipitating areas from nonprecipitating areas. In other

words, CWP data are assimilated only where reflectivity is

less than 15dBZ if radar data are applicable. The standard

deviation for CWP is set to 100gm22.

TPW is the amount of liquid water (cm) that would be

produced if all the atmospheric water vapor in a vertical

column were condensed. To keep consistency between

the algorithm of synthetic TPW and the method for

GOES-RABI (Li et al. 2010), only water vapor between

the surface and 300hPa is accumulated to derive TPW

because of the negligible water vapor content above

300hPa. All five classes of hydrometeor variables plus

the water vapor mixing ratio will be directly updated by

using synthetic radar reflectivity and satellite retrieval

data during DA cycles. For synthetic TPW data, the

algorithm defined in the GOES-16 ABI document is

used. Only the water vapor mixing ratio is required,

which is defined as

TPW5
1

r
w
g

ð
ps

300 hPa

q
n
(p) dp . (8)

In this equation, rw is thewater density of 1000kgm23, ps is

the surface pressure (hPa), and qv is thewater vapormixing

ratio. Otherwise, the calculation is similar to that used for

CWP. The standard deviation for TPW is set to 5mm.

d. Experimental design

We performed two sets of experiments (Table 1) with

backgrounds started from different environmental

soundings. Both experiments use the same procedure

to examine the impact of various datasets. The first set

of DA experiments is initialized using the identical

sounding as used in the truth simulation but without

introducing an ellipsoidal thermal bubble (so that

without assimilating radar and satellite data, the storm

never develops). The second set of experiments uses a

sounding with a dry bias (Fig. 1, red line) to define the

storm environment. In both experiments, the ensemble

size is set to 50. To generate the initial ensemble mem-

bers, perturbations are added to the horizontally ho-

mogeneous backgrounds for both experimental groups.

The random perturbation has a normal distribution with

zero mean and a standard deviation of 5m s21 for hori-

zontal wind, 3m s21 for vertical wind, 3K for potential

temperature, and an appropriate deviation dependent

on model levels for the water vapor mixing ratio. Once

the random perturbations are generated, a three-

dimensional recursive filter is applied to smooth the

random perturbations. The method closely follows that

used in Gao and Stensrud (2014). Perturbations are

added over the whole domain except for the five points

closest to the boundaries. No perturbations for the hy-

drometeor, the mass of dry air, or the geopotential are

included at the initial time. A 15-min ensemble forecast

is launched thereafter so that the random perturbations

grow dynamically, leading to a larger ensemble spread

that has a more reasonable covariance structure than

found by perturbing the initial sounding only.

TABLE 1. Assimilation experiments with different types within each sounding.

Soundings Experiments Radial velocity 1 reflectivity CWP TPW

Set 1 Original sounding RAD1 O
RADCWP1 O O

Set 2 Less moisture sounding RAD2 O
RADCWP2 O O
RADSAT O O O
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In both sets of experiments, satellite data are assimi-

lated at 5-min intervals beginning 15min prior to the

start of radar data assimilation. Radar data with or

without satellite data are assimilated every 5min. This

5-min assimilation–forecast cycle is repeated until 60min

of model integration time is reached. In all experiments,

the correlation scale is 4 km in the horizontal and 1km in

the vertical for the first outer loop and 2km in horizontal

and 1km in vertical for the second outer loop. The

RAD1 and RAD2 experiments assimilate only radial

velocity and reflectivity, identifying the performance of

radar DA under different situations of the atmosphere

(RAD1 uses the truth sounding, RAD2 uses the dry

biased sounding). The RADCWP1 and RADCWP2

experiments assimilate CWP data in addition to radar

data using the two environmental soundings. The final

RADSAT experiments combines radar and all satellite

data to determine whether the TPWdata have a positive

impact when the dry biased storm environment is used

compared to using radar data or CWP data only. Be-

cause the storm environment was set to perfect in the

first set of experiments, there is no need to assimilate

TPW data. While Jones et al. (2015) have demonstrated

the effectiveness of clear-sky CWP observations for

suppressing spurious cells, in our experiments both zero

reflectivity and clear-sky CWP are assimilated to inhibit

the development of spurious convections in all experi-

ments. After the 30-min assimilation of radar data (or

45min of satellite data assimilation if applied), a 1-h free

forecast is launched with the control member and the

results are compared to the truth simulation to evaluate

forecast performance (Fig. 4).

4. Analysis diagnostics

a. Experiments with perfect storm environment

To inspect the performance of the DA results, the

analyses of the control member are shown for each

experiment after seven DA cycles of radar data, and 10

cycles of CWP data if they are assimilated (at 60min of

model time). Comparing the analysis with the truth

simulation at 4 km AGL in Fig. 5a, both RAD1 (Fig. 5c)

and RADCWP1 (Fig. 5e) recover most of the storm

characteristics, such as the strong reflectivity core and

midlevel mesocyclone. Almost all areas of . 50 dBZ

reflectivity within the right-splitting storm are well

recovered in the analysis. Stronger convergence is

shown in RADCWP1 with a maximum vorticity of

1431 3 1025 s21 (Fig. 5e), which is close to the 1640 3
1025 s21 value found in the truth run (Fig. 5a). Vertical

cross sections of reflectivity are also created along a line

35km from the southern boundary where the maximum

vertical velocity is located in the truth simulation. The

patterns of reflectivity and vorticity shown in the vertical

section for RADCWP1 (Fig. 5f) represent the true state

of the atmosphere better near the tropopause (about

10 km). The vorticity structure of themain storm and the

reflectivity core around x 5 35km are much more or-

ganized and consistent with the truth if additional CWP

data are assimilated (Fig. 5f). Spurious echoes in low and

midlevels around the major cell are also effectively

eliminated.

The vertical distribution of hydrometeor mixing ratios

supplies extra information. Each experiment generates

broadly similar properties of the hydrometeor fields

compared to truth, but each experiment also reveals

differences in detail. All experiments more or less de-

crease the maximum concentrations of the precipitating

hydrometeors (rain, snow, graupel; Figs. 6f–h,k–m vs

Figs. 6a–c), with a smaller amount of decreasing in

RADCWP1. This result indicates that assimilating CWP

data in addition to radar data provides a better repre-

sentation of the precipitating hydrometeors. Further-

more, without assimilated CWP data, nonprecipitating

hydrometeors (cloud water and ice; Figs. 6i,j) are no-

ticeably less than those present in the reference truth.

FIG. 4. Time series flowchart of radar and satellite data assimilation cycles for the experiments

listed in Table 1.
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FIG. 5.Wind vectors, reflectivity, and vorticity in (a),(c),(e) horizontal cross section at 4 kmAGLand (b),(d),(f)

vertical cross section at y 5 35 km for the truth simulation, RAD1, and RADCWP1 at 60min.

JANUARY 2018 PAN ET AL . 75

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:26 PM UTC



Themixing ratio of cloud water analyzed in RADCWP1

(Figs. 6n,o) is .2.2 g kg21 with an ice mixing ratio .
0.7 g kg21—values that are much closer to the truth run

(Figs. 6d,e) than the experimentRAD1. The coverage of

cloud water . 1.6 g kg21 and cloud ice . 0.5 g kg21 in

RADCWP1 is comparable to the truth. These results

suggest that assimilating CWP data accelerates the ini-

tialization of both precipitating and nonprecipitating

hydrometeor variables.

The root-mean-square errors (RMSE) with and

without assimilating CWP data compared with the truth

simulation during theDA cycles are shown in Fig. 7. The

statistics are calculated over the area where observed

reflectivity is greater than the threshold 15 dBZ. Saw-

tooth patterns in RMSE are usually present wildly for

variables directly related to observations, for example, u

and w. In contrast with the RMSE for variables not di-

rectly observed by radar, or CWP—for example, po-

tential temperature—sawtooth patterns are discernable

but not wildly. This occurs because during the analysis

step, the variables directly related to observations

incur a larger decrease (constrained directly by the ob-

servations). Then during the 5-min forecast step, the

errors for these variables grow faster than the errors in

those variables not directly related to the observations in

the analysis step (Gao and Stensrud 2014). Within the

first 10min of the DA cycles (15–25min), assimilating

only CWP data increases the RMSE of the selected

variables because CWP data do not have enough in-

formation to initialize the convection in such a short

period. After the steep increment, the RMSEs start

decreasing with the cycles moving forward. Once the

radar data are assimilated, these RMSEs rapidly de-

crease in 10min. At the end of the DA cycles, the errors

are smaller than those in RAD1 by at least a factor of 3.

Since we usually have cloud signal from satellite be-

fore available radar precipitation observations (Jones

and Stensrud 2012; Jones et al. 2013), we choose to as-

similate satellite data prior to radar assimilation in our

experiments. But to further investigate whether the

improvements are due to the earlier availability of sat-

ellite observations or additional observation types, an

extra experiment that assimilates both data beginning at

the same time (30min of model integration time) has

been performed as well. Based on the statistics (Fig. 7,

blue lines), additional CWP data have advantages on the

analyses after three assimilation cycles when both radar

and satellite data assimilations begin at the same time.

However, earlier availability of satellite observations

has a much bigger positive impact and accelerates the

FIG. 6. Vertical cross section of five hydrometeor mixing ratios, including (a),(f),(k) rainwater, (b),(g),(l) snow, (c),(h),(m) graupel,

(d),(i),(n) cloud water, and (e),(j),(o) ice across y 5 35 km for truth, RAD1, and RADCWP1 at 60 min.
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speed of RMSE convergence. The result suggests that

both an additional type of and earlier availability of

CWP observations have positive impacts and lead to the

improvement of the analyses.

In summary, the storm patterns are approximately

recovered in these two experiments. But large im-

provements are emphasized in the RADCWP1 experi-

ment based on the statistics. The qualitative and

quantitative analyses, including differences in hydro-

meteor variables between the experiments and the truth,

and the steeper decrease of RMSEs, demonstrate a

faster spinup time and better analyses when addi-

tional CWP data are assimilated. However, like many

previous OSSEs for convective-scale DA, all the

abovementioned experiments are done in a perfect

storm environment, which is not realistic.

b. Experiments with dry bias in storm environment

The impacts of radar data and satellite retrievals in the

En3DVar analysis are evaluated by another set of ex-

periments using amodified sounding with a dry bias. The

temperature profile is identical to that in the original

sounding but the dewpoint temperature is decreased,

since the water vapor content is artificially reduced by

15% for all layers. In this way, the CAPE for the new

sounding (Fig. 1, red lines) decreases to 1426 J kg21

(from 3918 J kg21 in the truth run) as a result of the re-

duced moisture in the lower troposphere. The environ-

ment for this case is unable to sustain deep convection

when started with a thermal bubble (not shown).

Figure 8 depicts wind vectors and reflectivity in both

horizontal and vertical cross sections at the end of each

assimilation cycle, with the vertical cross sections taken

across y 5 35km. The horizontal wind analyses for all

experiments look very good, because radial velocities

are directly assimilated. But when we compare the

vorticity or reflectivity patterns, the experiments with

different observation sources result in totally different

analyses. RAD2 almost fails in producing two supercells

(Fig. 8a), where the maximum value of the reflectivity

for the left-moving cell is less than 35dBZ compared to

55 dBZ in the truth run (Fig. 5a). Meanwhile, the

strong vorticity of 1640 3 1025 s21 associated with

reflectivity. 55dBZ within the right-splitting cell in the

truth run is not seen in RAD2. Comparing Fig. 8b with

Fig. 5a, we find that the analysis with only radar data

does not recover the rising motions in either the upper

levels (10–13 km AGL) or the lower levels (2–4 km

AGL), and the corresponding narrow area of high re-

flectivity from the surface to 14km above the ground

FIG. 7. RMSE of the En3DVar analysis and forecast for the RAD1 (purple) and RADCWP1 (green) experi-

ments, and an extra experiment (blue) that is similar to RAD1 but uses both radar and CWP data. (a) u (m s21),

(b) w (m s21), (c) perturbation pt (K), and (d) simulated rf (dBZ).
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FIG. 8. As in Fig. 5, but for experiments RAD2, RACWP2, and RADSAT.

78 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:26 PM UTC



FIG. 9. Water vapor mixing ratio in the (a),(c),(e),(g) horizontal cross section at

500mAGLand (b),(d),(f),(h) vertical cross section at y5 35 km for truth, RAD2,

RADCWP2, and RADSAT at 60min.
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FIG. 10. Temperature and wind fields at (a),(c),(e),(g) 900 and (b),(d),(f),(h) 500 hPa

for the truth simulation, and experiments RAD2, RADCWP2, and RADSAT.
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seen in the truth run. Slightly weak and discontinuous

reflectivity patterns extending to the east boundary in-

dicate an incorrect analysis of the cirrus outflow. For

RADCWP2, the analysis looks much better than found

when assimilating only radar data, especially the extent

of the 20-dBZ reflectivity region, which is close to that

seen in the truth run. The supercell (Fig. 8d) as indicated

by the maximum vorticity and reflectivity values corre-

sponds well with the truth simulation. However, much

stronger reflectivities and chaotic vorticity patterns are

displayed in both the horizontal and vertical sections.

Both the left- and right-moving cells look too strong

because themaximumvorticity reaches.18003 1025 s21,

or over 2003 1025 s21 greater than that seen in the truth

simulation (Fig. 5a). When TPW data are also assimi-

lated in the experiment RADSAT, the precipitating

area is approximately identical in shape and coverage

compared with the truth run (Figs. 8e,f), although the

vorticity field somehow still has noise patterns inside the

storm. But we notice that the maximum vertical velocity

and relative vorticity are enhanced. The analyses for the

water vapor mixing ratio at the end of the DA cycles for

RAD2 and RADCWP2 (Figs. 9c–f) are much less than

those in the truth simulation (Figs. 9a,b). But this dry

bias in the water vapor mixing ratios is largely corrected

with additional assimilation of TPW data (Figs. 9g,h).

This result illustrates that a storm environment dry bias

cannot be corrected by assimilating radar data and sat-

ellite CWP data alone. Since the storm environment is

fundamentally important for predicting the correct

evolution of deep convection, the additional assimila-

tion of TPW data can be very valuable.

The midlevel and near-surface temperature fields

again show that assimilating only radar data generates

the worst analysis among the RAD2, RADCWP2, and

RADSAT experiments (Fig. 10). The representations of

cold pools (Fig. 10c) and warm cores (Fig. 10d) em-

bedded in the storm are hard to discern in RAD2.

The temperature structure is improved in RADCWP2

(Figs. 10e,f), since the cold pool can be found to be as-

sociated with each of the storms, but it is too cold and

some splitting cold areas are not expected. Comparing

Figs. 10g,h with the others, we can find that the analyses

with TPW data are the best among all the experiments

as a result of the improved magnitude and location of

the cold pool and the warm core structures.

Figure 11 shows the RMSE of four selected variables

(horizontal wind u, vertical wind w, potential tempera-

ture pt, and reflectivity rf) for this second group of ex-

periments. Results indicate assimilating CWP data prior to

assimilating radar data does not alter the RMSEs very

much.However, assimilating extra TPW reduces the u and

w RMSEs compared to the other experiments, highlight-

ing the importance of the near-storm environment. The

FIG. 11. As in Fig. 7, but for experiments RAD2 (purple), RADCWP2 (green), and RADSAT (blue).
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errors of the wind and temperature in RADSAT are

comparable to those drawn from the RAD2 and

RADCWP2 experiments initially, but then they decrease

once the radar data are assimilated, and finally they be-

come the smallest among these three experiments. The

error of the reflectivity is always lower than other experi-

ments.Overall, the accuracy of the analysis improveswhen

TPW data are assimilated. Further impacts of assimilating

TPW data are shown in the forecast evaluation section.

5. Forecast verification

a. Experiments with perfect storm environment

To evaluate the impact of assimilating different data

for short-term forecasts, a 1-h free forecast is launched.

The reflectivity fields at 4 km AGL from the DA ex-

periments are compared to the truth simulation. In

general, all the prognostic variables are appropriately

predicted in the forecasts. The forecasts of RAD1

(Figs. 12e–h) generate slightly smaller areas covered

by .55-dBZ reflectivity compared to those of the truth

(Figs. 12a–d) and RADCWP1 (Figs. 12i–l). However,

assimilating CWP data together with radar data results

in a small eastward displacement of the maximum vor-

ticity in the forecasts.

Figure 13 shows the bias and RMSE for the 1-h

forecast of the control member with and without as-

similating CWP data. It shows that the biases for all

selected variables are improved (closer to zero) when

CWP data are assimilated (Figs. 13a,c,e,g). The RMSEs

in RADCWP1 are smaller for most of the forecast pe-

riod. But they are greater than the RMSEs in RAD1

after 50min for the u wind component, and after 40min

for vertical velocity and potential temperature. At the

FIG. 12. The 4-km AGL wind, vorticity, and reflectivity from (a)–(d) truth, (e)–(h) RAD1, and (i)–(l) RADCWP1 at 15-min intervals for

the 1-h free forecast initiated at 60min.
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end of the forecast period, RMSEs for nearly all vari-

ables are very close to each other, especially for poten-

tial temperature and reflectivity.

To further quantify the impact of the radar and sat-

ellite data, in addition to statistical errors, the following

skill scores are calculated: probability of detection

(POD), false alarm rate (FAR), critical success index

(CSI), and Heidke skill score (HSS). A threshold of

40 dBZ for reflectivity is used as the threshold for all skill

scores (Table 2). A good forecast should maximize the

number of ‘‘hits’’ leading to a high POD with low FAR

as a consequence of suppressing false alarms.

A set of skill scores between simulated reflectivity

fields obtained by the truth run and each experiment

over the whole domain is shown in Fig. 14. RAD1 and

FIG. 13. (left) Bias and (right) RMSE of the 1-h free forecast initiated at 60min of model time for RAD1 (purple)

and RADCWP1 (green) for (a),(b) u (m s21); (c),(d) w (m s21); (e),(f) pt(K); and (g),(h) simulated rf(dBZ).

TABLE 2. Contingency table for accumulating hits, false alarms,

misses, and correct null forecasts.

Event observed (.40dBZ)

Contingency table Yes No

Event forecast (.40 dBZ) Yes Hits False alarms

No Misses Null forecasts

JANUARY 2018 PAN ET AL . 83

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:26 PM UTC



RADCWP1 generate similar FAR, but the former has a

slightly lower FAR thanRADCWP1. Since RADCWP1

combines CWP data containing nonprecipitating cloud

properties, such as cloud water and cloud ice, and

spreads this information in space and to different vari-

ables through flow-dependent covariances, RADCWP1

generates a higher POD than RAD1 during the forecast

period, resulting in a higher CSI and HSS. The differ-

ences in CSI and HSS between the two experiments

decrease with time, and they become very small at

115min. However, RADCWP1 continually has higher

overall skill scores for the first 50min of the forecast.

b. Experiments with dry bias in storm environment

Similar to the last section, the impact of various data

on the short time forecast started from an imperfect

storm environment with a dry bias is investigated. Ob-

viously, the very weak initialized storm cell in RAD2

after 30min of DA cycles quickly dies once the forecast

is launched (Figs. 15a–d). Though the major right-

moving storm is much better initialized in RADCWP2

when CWP are also assimilated, it also dies at roughly

30min of the forecast (Figs. 15e–h). The reason for the

quick dissipation of the storm is simple: the storm en-

vironment is not correctly generated by DA even when

both radar data and CWP data are assimilated. When

TPW data are also assimilated into the RADSAT exper-

iment, the storm environment is corrected to some extent,

enough that the two storm cells are reproduced in the right

time. The left-splitting storm, which is not produced in

previous experiments, is partly captured by RADSAT

because more adequate low-level moisture and thus a

more accurate environmental instability are produced by

the DA. Though the intensity and area of these two storm

cells are generally well maintained during the 60-min

forecast period (Figs. 15i–l), the left-splitting storm has a

northwest bias during the 1-h forecast period.

The bias and RMSE for four variables are calculated

for the experiments within the biased environment and

shown in Fig. 16. These clearly demonstrate that errors

of zonal wind, potential temperature, and reflectivity

can be significantly reduced when TPW data are as-

similated (Figs. 16a,b,e–h). Though the bias of the ver-

tical wind field (Fig. 16c) is the best in the RADSAT

experiment, the results of RMSE look mixed for the

vertical wind field (Fig. 16d). Finally, the same set of skill

scores that compared RAD2, RADCWP2, and RAD-

SAT with the truth simulation are plotted in Fig. 17.

RAD2 essentially has no skill for all forecast times,

while RADCWP2 shows some skill out to a 30-min

forecast but almost no skill thereafter. RADSAT

generates higher skill scores than either RAD2 or

FIG. 14. Skill scores, including (a) POD, (b) FAR, (c) CSI, and (d)HSS, of the 1-h free forecast initiated at 60min of

model time for RAD1 (purple) and RADCWP1 (green).
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RADCWP2. This result clearly indicates that in-

corporating TPW data for correcting moisture values

within the storm environment is very helpful, even if

using vertically integrated moisture data cannot pre-

cisely adjust the vertical moisture distribution of the

storm environment.

6. Conclusions

In this study, synthetic radar radial velocity and

reflectivity data, along with satellite CWP and TPW

data, are assimilated into the WRF Model using the

En3DVar system within an OSSE. Two groups of DA

and forecast experiments are performed. The first set of

experiments assimilates storm-resolving radar data and

CWP data using a perfect storm environment, while a

second group of experiments assimilate additional TPW

data using a storm environment with a dry bias. The

advantages of simultaneously assimilating both radar

and satellite data, as well as the importance of an ac-

curate storm environment, are shown by comparing

analyses and forecasts against the reference truth run.

The results from the first set of experiments indicate

that assimilating satellite-derived CWP data reduces the

spinup time for convection within the model compared

to assimilating only radar data. When assimilating only

radar radial velocity and reflectivity data, the wind

analysis is very close to the truth run, but there are errors

in the analyses of temperature and nonprecipitating

hydrometeors, as these variables are not directly ob-

served by radars. The additional satellite-derived CWP

data do provide information on nonprecipitating hy-

drometeors, and these data can be assimilated before

precipitating clouds are generated. The RAD1 experi-

ment underestimates the cold pool strength, which is

an important characteristic of any storm, but it still

FIG. 15. As in Fig. 12, but for experiments RAD2, RADCWP2, and RADSAT.
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produces an acceptable 1-h forecast, though with larger

biases in magnitude and storm location than found in

RADCWP1. For the forecast in RADCWP1, the errors

are actually reduced by a factor of 2 and PODs are in-

creased by 0.2 during the first 45-min forecast period

compared to RAD1. The combination of CWP and ra-

dar data produces a more accurate analysis and forecast

when using a perfect storm environment.

The second group of experiments examines the per-

formance of radar and satellite DA when the storm

environment has a dry bias, and seeks to determine

whether assimilating TPW data can help improve the

biased storm environment. The biased environment has

reduced moisture content in the troposphere, such that

the atmosphere becomes too stable to trigger and sus-

tain convection. Assimilating only radar data does not

generate sustained convection, since radar data contain

little information about atmospheric moisture and are

unable to adjust the environment. Much better analyses

and forecasts are produced by also assimilating CWP

data in the RADCWP2 experiment. The right-splitting

storm survives much longer, up to 45min in the forecast,

but it still has a motion bias to the northeast of the ref-

erence truth. In addition, the left-moving storm is still

not analyzed. This is because the CWP data contain

cloud information but not water vapor information.

FIG. 16. As in Fig. 13, but for experiments RAD2 (purple), RADCWP2 (green), and RADSAT (blue).
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Thus, CWP may help correct the dry bias in the storm

environment slightly, but its information content is too

small to make a dramatic improvement. Some positive

impacts of assimilating TPW are observed in both the

analysis and forecast because TPW data contain in-

formation on the total moisture in the troposphere.

Although the left-splitting storm has a northwestern

bias, the analysis of the two storms is more accurately

depicted in magnitude and location by the end of the

DA period compared with the experiment, which as-

similates only radar data or both radar and CWP data.

Higher POD and HSS than the other experiments sug-

gest that TPW data are helpful in correcting a dry bias in

the storm environment. This group of experiments em-

phasize that the storm environment, especially the

moisture profile, is fundamentally important to the

storm development. Assimilating radar data is impor-

tant because these data can resolve the internal storm

structure. However, the storm environment is also im-

portant and can be adjusted and improved by assimi-

lating other observations, such as satellite TPW data.

In this study, although some encouraging results are

obtained from assimilation of combined CWP data and

radar data into a convective-scale model in OSSEs,

further investigation of assimilating satellite data to-

gether with radar data is needed. Research is ongoing

for using new products from the GOES-R ABI in DA,

and it is expected that the high-resolution satellite data

from this new instrument will be very helpful in con-

structing internal storm structures and in providing

information on the storm environment so that

convective-scale NWP can be improved in the future.

Acknowledgments. This research was funded by the

NOAA Warn-on-Forecast project provided by NOAA/

Office of Oceanic and Atmospheric Research under

NOAA–University ofOklahomaCooperativeAgreement

NA11OAR4320072, U.S. Department of Commerce;

and NSF Grants AGS-1341878 and AGS-1359703. The

NOAA Research and Development High Performance

Computing Program and the OSCER from the University

of Oklahoma are acknowledged for providing computing

and storage resources.

REFERENCES

Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity

of numerically simulated cyclic mesocyclogenesis to vari-

ations in model physical and computational parameters.

Mon. Wea. Rev., 130, 2671–2691, https://doi.org/10.1175/

1520-0493(2002)130,2671:TSONSC.2.0.CO;2.

Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase compar-

ative assessment of the ensembleKalman filter for assimilation of

radar observations. Part I: Storm-scale analyses.Mon.Wea. Rev.,

137, 1805–1824, https://doi.org/10.1175/2008MWR2691.1.

FIG. 17. As in Fig. 14, but for experiments RAD2 (purple), RADCWP2 (green), and RADSAT (blue).

JANUARY 2018 PAN ET AL . 87

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:26 PM UTC

https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2
https://doi.org/10.1175/2008MWR2691.1


Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and

A. Avellano, 2009: The Data Assimilation Research Testbed:

A community facility.Bull. Amer.Meteor. Soc., 90, 1283–1296,

https://doi.org/10.1175/2009BAMS2618.1.

Berre, L., O. Pannekoucke, G. Desroziers, S. Ştef�anescu,
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